Appendix C Airspeeds

Correction From Instrument Reading to Indicated Airspeed

$$V_{IAS} = V_i + \Delta V_i$$

where

 V_{IAS} = indicated airspeed

 V_i = instrument reading of airspeed

 $\Delta V_i = \text{instrument error} \left(\text{usually small} \right)$

Correction From Indicated Airspeed to Calibrated Airspeed

$$V_{CAS} = V_{IAS} + \Delta V_{p}$$

where

 V_{CAS} = calibrated airspeed

 $\Delta V_P = \text{position error (usually small)}$

Correction From Calibrated Airspeed to Equivalent Airspeed

$$V_{EAS} = V_{CAS} + \Delta V_{C}$$

where

 V_{EAS} = equivalent airspeed

 $\Delta V_c =$ compressibility correction

(small if M < 0.5)

Correction From Equivalent Airspeed to True Airspeed

Pitot-static tube on Cessna 172

ASI recognizes pressure, not density

$$p_{total} = p_{static} + q$$

 $q = \text{dynamic pressure} = p_{total} - p_{static}$

$$= \frac{1}{2} \rho \left(V_{TAS} \right)^2 = \frac{1}{2} \rho_0 \left(V_{EAS} \right)^2$$

$$\rho = \rho_{ambient}$$

where
$$\rho = \rho_{ambient}$$
 $\rho_0 = r_{sealevel}$

$$V_{TAS} = V_{EAS} \frac{1}{\sqrt{\sigma}}$$

where
$$V_{TAS}$$
 = true airspeed

$$\sigma = \frac{\rho_{\text{ambient}}}{\rho_{\text{sea level}}}$$

Climbing at Constant L/D

- As airplane climbs, ρ decreases.
- V must increase to maintain constant C_L

Climb at Constant V_{EAS}

$$C_{L} = \frac{L}{qS} = \frac{L}{\frac{1}{2}\rho(V_{TAS})^{2}S} = \frac{L}{\frac{1}{2}\rho_{0}(V_{EAS})^{2}S}$$

Relationship Between TAS, EAS, and Mach Number as Fn. Of Alt

DC-9 Climb Schedule

