Chapter 5 Thrust/ Weight (T/W) and Wing Loading (W/S)

Thrust/Weight and Wing Loading

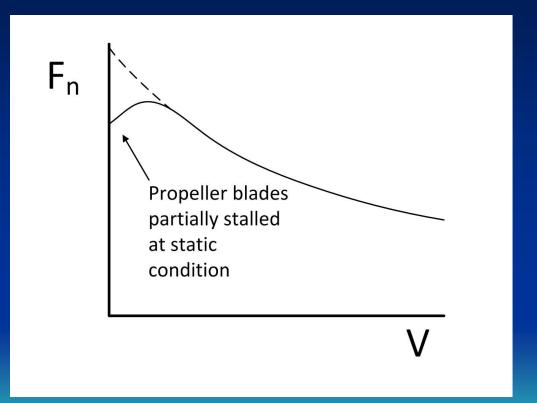
Unless specified otherwise thrust/weight and wing loading refer to reference conditions (below) \cdot If there is any doubt the suffix_{ref} should be appended

Thrust/Weight Ratio =
$$\left(\frac{\mathbf{T}}{\mathbf{W}}\right)_{\text{ref}}$$

where $\, {f T} = {f Maximum\, dry\, thrust\, with\, all\, engines\, running\, at\, sea\, level,\, static\, conditions,\, installed\, {f V}}$

W = Maximum takeoff gross weight at specified condition

 $oxed{\left(}$ usually block release, but maybe brake release at start of takeoff roll $oxed{\left(}$


Wing Loading
$$=$$
 $\left(\frac{\mathbf{W}}{\mathbf{S}}\right)_{\text{ref}}$

where S = Reference wing area

Why
$$\frac{W}{S}$$
 and not $\frac{S}{W}$? Because $\frac{W}{S}$ relates to the lift coefficient $C_L = \frac{1}{q} \left(\frac{W}{S} \right)$ and has units of pressure

Thrust versus Speed Lapse Rate

Anomalous (T/W)_{ref} results obtained if thrust lapse rate with speed is also anomalous

T/W and W/S related to Payload-Range and Performance

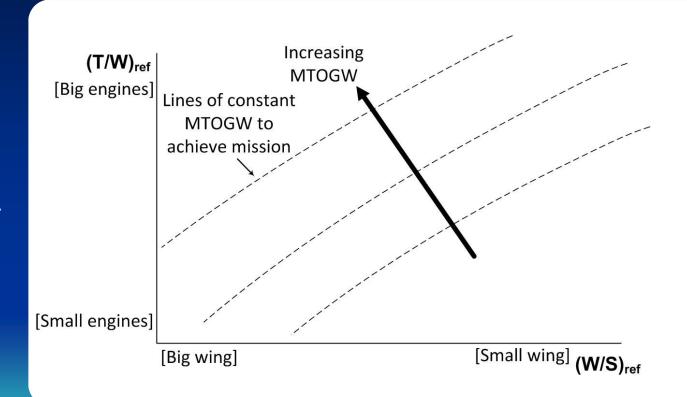
- Engines and wing should be no larger than they have to be
 - T/W should be as low as possible
 - W/S should be as high as possible
- while still meeting all performance requirements
 - Takeoff field length
 - Landing field length
 - Approach speed
 - Initial climb
 - Enroute climb
 - Initial cruise altitude

- Sustained turn
- Instantaneous turn
- Acceleration
- Specific excess power (SEP)

Performance Constraints

- Air maneuvers
 - Steady level flight**
 - Steady climb**
 - Level acceleration*
 - Sustained turn*
 - Specific excess power*
- All the above can be determined using one equation

- Other constraints
 - Takeoff **
 - Approach speed*
 - Landing distance*
 - Second segment climb*
 - Instantaneous turn *


^{*} Covered in Ch 17 Performance

^{**} Covered in this chapter and in Ch 17 Performance

Mission Sizing

Fly mission for different values of T/W and W/S

Raymer: Ch 3 Sizing from a Sketch Ch 5 Initial Sizing Ch 19 Trade Studies

Factoring Values to Reference Conditions

For equations in the form $T/W = f(W/S, var_1, var_2, etc)$

Factor *output* value of $\frac{T}{W}$

2

$$\left(\frac{\mathsf{T}}{\mathsf{W}}\right)_{\mathsf{ref}} = \frac{\mathsf{T}}{\mathsf{W}} \frac{\mathsf{W}}{\mathsf{W}_{\mathsf{ref}}} \frac{\mathsf{T}_{\mathsf{ref}}}{\mathsf{T}}$$

where

 $T = thrust \, at \, that \, performance \, condition$ $T_{ref} = reference \, thrust \, (usually \, sea \, level \, static \, installed \, thrust \, at \, takeoff \, rating \, with \, all \, engines \, operating \,)$

Obtain $\frac{T_{ref}}{T}$ from engine performance deck

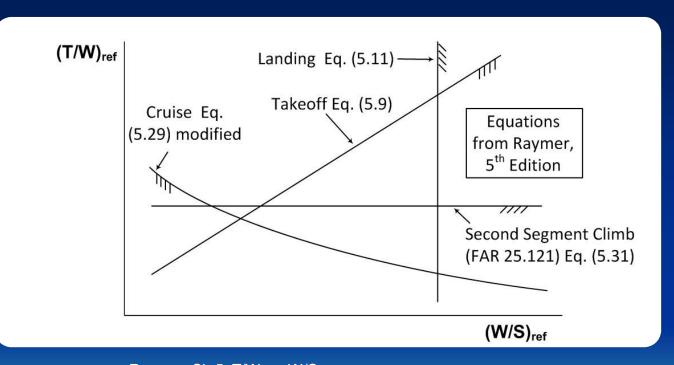
Factor *input* value of $\frac{W_{ref}}{S}$

$$\frac{W}{S} = \frac{W_{ref}}{S} \frac{W}{W_{ref}}$$

where

W = weight at that performance condition

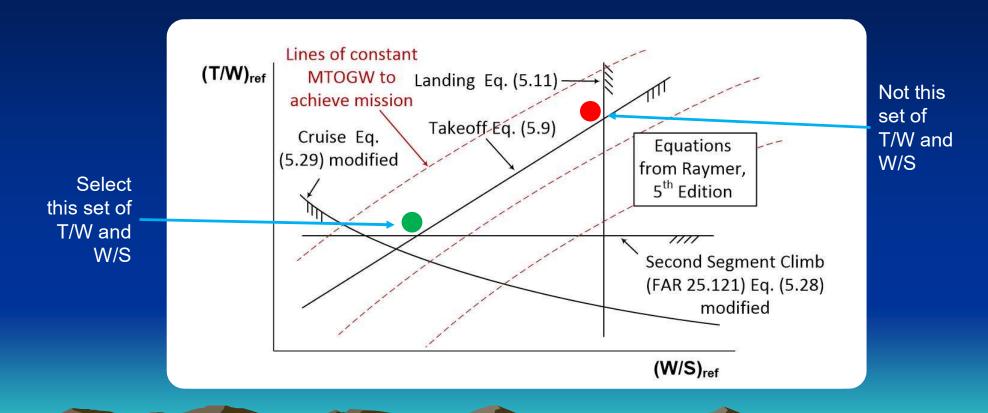
 $W_{ref} = max TOGW$

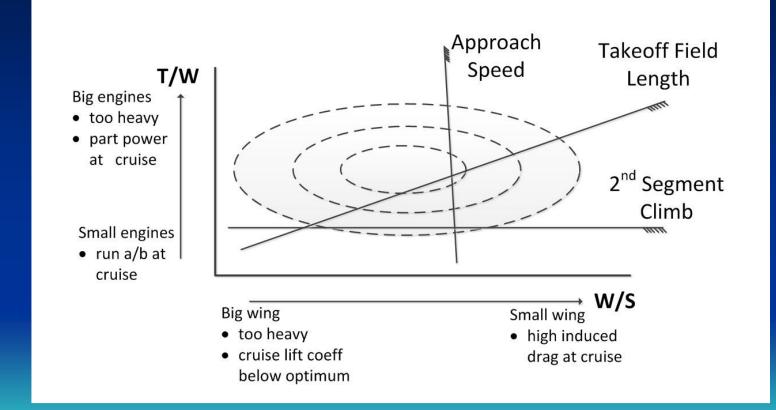

S = reference wing area

Obtain $\frac{W}{W_{ref}}$ from mission routine

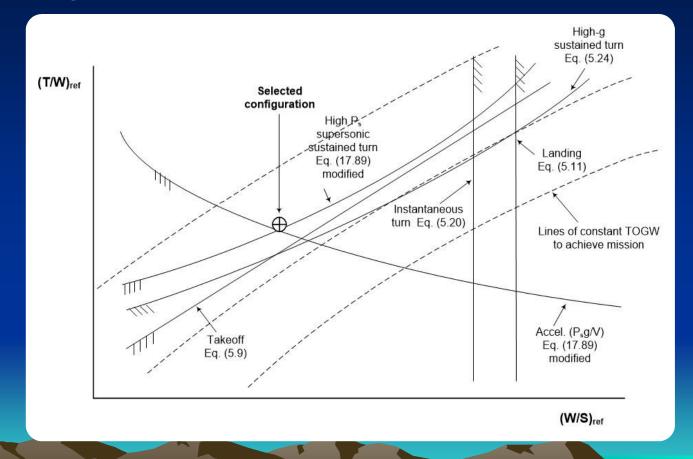
Sizing and Performance – Commercial

Use these equations for student exercise

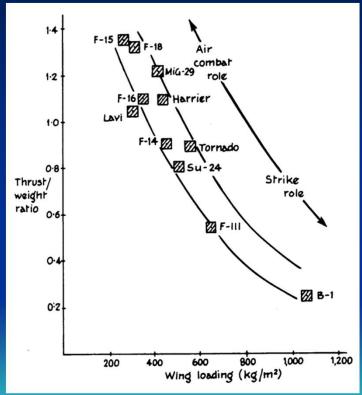

For industrial application, do detailed performance analysis using computer programs


Raymer: Ch 5 T/W vs. W/S

Ch 17 Performance and Flight Mechanics
Ch 19 Trade Studies

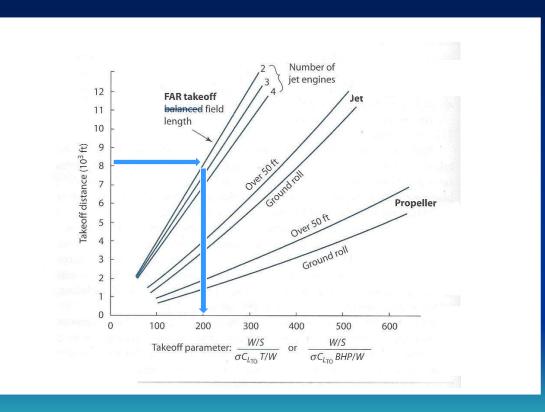

Sizing and Performance – Commercial Aircraft

Knothole Plot for SST with A/B



Sizing and Performance – Combat Aircraft

Sizing and Performance – Military Aircraft


- Air superiority
 - High T/W, low W/S (i.e. big engines, big wing)
- Bomber/strike/interceptor
 - Low T/W, high W/S (i.e. smaller engine, smaller wing)

Takeoff Parameter

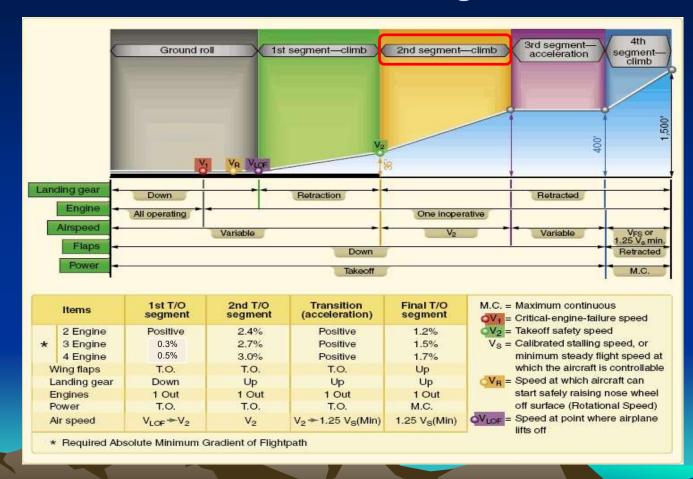
Simplified method of estimating T/W = fn(W/S)

Original analysis by Larry Loftin at NASA Langley

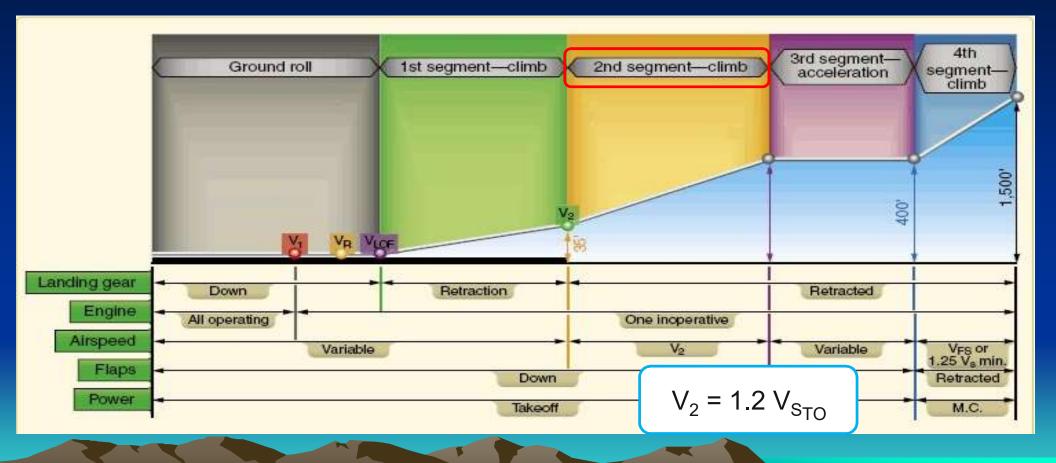
Calculation of TOFL Constraint

For known TOFL requirement, find Takeoff Parameter (TOP) from Fig. 5.4

then
$$\frac{T}{W} = \frac{\frac{W}{S}}{(TOP) \sigma C_{L_{TO}}}$$


where
$$\sigma = \frac{\rho}{\rho_0}$$

For military jet or propeller aircraft $C_{L_{TO}} = \frac{\left(C_{L_{max}}\right)_{TO}}{1.21}$


For FAR takeoff lines
$$C_{L_{TO}} = (C_{L_{max}})_{TO}$$

 $\left(\text{Also need} \left(C_{L_{\text{max}}} \right)_{TO} \text{ to estimate 2nd segment climb speed, } V_2 \right)$

Takeoff Climb Segments

Takeoff Climb Segments

Takeoff Climb Segments

Items		1st T/O segment	2nd T/O segment	Transition (acceleration)	Final T/O segment	M
	2 Engine	Positive	2.4%	Positive	1.2%	4
*	3 Engine	0.3%	2,7%	Positive	1.5%	- 25
	4 Engine	0.5%	3.0%	Positive	1.7%	
Wing flaps		T.O.	T.O.	T.O.	Up	
Landing gear		Down	Up	Up	Up	4
Engines		1 Out	1 Out	1 Out	1 Out	
Power		T.O.	T.O.	T.O.	M.C.	
Α	vir speed	V _{LOF} → V ₂	V ₂	V ₂ →1.25 V _S (Min)	1.25 V _S (Min)	OV

M.C. = Maximum continuous

OV7 = Critical-engine-failure speed

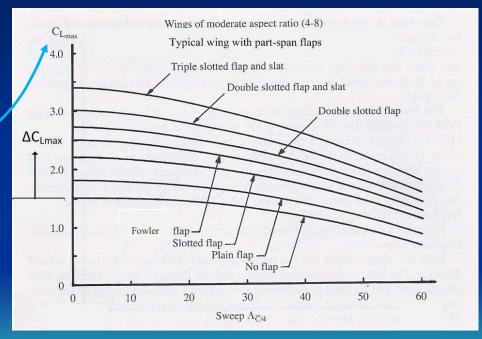
V₂ = Takeoff safety speed

V_S = Calibrated stalling speed, or minimum steady flight speed at which the aircraft is controllable

V_R = Speed at which aircraft can start safely raising nose wheel off surface (Rotational Speed)

LOF = Speed at point where airplane

^{*} Required Absolute Minimum Gradient of Flightpath


Estimation of Takeoff C_{Lmax} (Raymer Method)

From thrust lapse rate with speed, we need this to estimate V_S , hence V_2 (=1.2 V_S), and thus thrust at 2^{nd} segment

From Raymer (6th Ed.) page 127 or (5th Ed.) page 128

$$(C_{L_{\text{max}}})_{TO} \approx 0.8(C_{L_{\text{max}}})_{Landing}$$

In landing configuration

Raymer Fig. 5.3 Maximum Lift Coefficient

Estimation of Takeoff C_{Lmax} (Torenbeek Method)

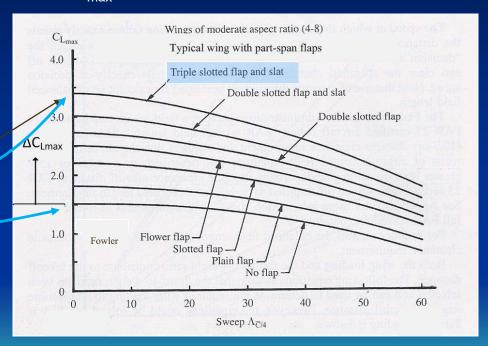
If airfoil section is unknown, factor $\Delta C_{L_{max}}$ value from Fig. 5.3

Assume

$$\left(\Delta C_{L_{max}}\right)_{TO} = 0.55 \left(\Delta C_{L_{max}}\right)_{Land} \left(Torenbeek Fig 7.24\right)$$

e.g.

from figure on right,


for unswept wing with triple-slotted flap and slat >

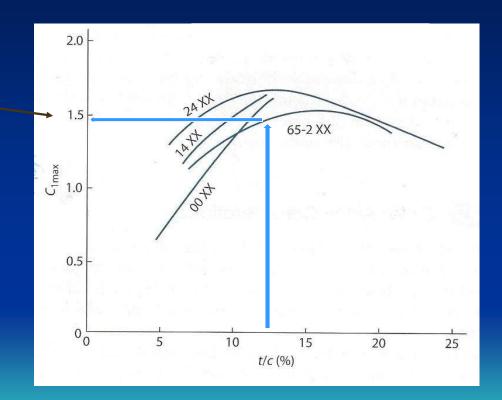
$$(\Delta C_{L_{max}})_{L \text{ and}} = 3.4 - 1.5 = 1.9$$

SO

$$\left(\Delta C_{L_{max}}\right)_{TO} = 0.55 \times 1.9 = 1.05$$

$$(C_{L_{max}})_{TO} = 1.5 + 1.05 = 2.55$$

Raymer Fig. 5.3 Maximum Lift Coefficient


Known Airfoil Section

If airfoil section is known, get section $C_{I_{\text{max}}}$ values from Raymer Fig. 4.13 ~

Use Raymer Eq (5.7) for clean (no flap) curve:

$$C_{L_{\text{max}}} = 0.9 C_{I_{\text{max}}} \cos(\Lambda)_{0.25c}$$

Then use $\Delta C_{L_{\rm max}}$ values from Raymer Fig. 5.3 (previous slide)

2nd Segment Climb Estimate of T/W Required

Conditions are

Critical engine inoperative (OEI)

In ground effect

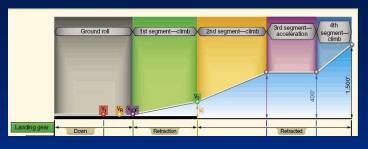
Speed = V_2

Flaps – takeoff

Landing gear — up

Climb gradient (G) (FAR 25.121) :

Two engines – 2.4%


Three engines – 2.7%

Four engines – 3.0%

V₂ is initial climb speed for which

 $V_2 > V_{mc}$ (minimum control speed)

 $V_2 > 1.2 V_{s_{TO}}$ (stall speed in takeoff condition)

$$\left(\frac{T}{W}\right)_{2nd \text{ seg}} = \frac{N}{N-1} \left(\frac{1}{\left(\frac{L}{D}\right)_{2nd \text{ seg}}} + G\right)$$

Nominally independent of W/S

where:

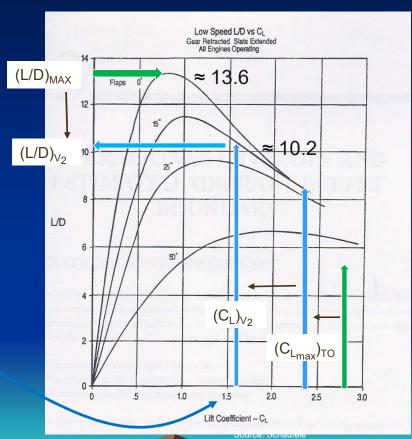
N = number of engines

Assume for first estimate

$$\left(\frac{L}{D}\right)_{2nd \, seg} = 0.75 \left(\frac{L}{D}\right)_{max \, clean}$$

(L/D)_{max clean} see Raymer Fig. 3.5

Check on this value!


Check on L/D for 2nd Segment Climb

Example for 15° flaps

• E.g. for double-slotted flap/slat on wing with $\Lambda_{c/4} = 20 \text{ deg}$

$$C_{L_{max}}$$
 = 2.8 (from Raymer Fig.5.3)

- Assume $(C_{L_{max}})_{V_2} = 0.8 C_{L_{max}} = 2.24$ (Raymer p.180) $V_2 = 1.2V_s$ $(C_L)_{V_2} = 2.24/1.44 = 1.56$
- Valid assumption that (L/D)_{V2} ≈ 0.75 (L/D)_{max}

Calculation of (T/W)_{2nd seg}

To account for one-engine-inoperative (14 CFR 25.121 (b))

$$\left(\frac{T}{W}\right)_{2nd\,seg} = \frac{N}{N-1} \left(\frac{1}{\left(\frac{L}{D}\right)_{2nd\,seg}} + G\right)$$

Required climb gradient, G, is set by FAR requirements

G = 2.4% for two-engine aircraft

- = 2.7% for three-engine aircraft
- = 3.0% for four-engine aircraft

Finally
$$\left(\frac{T}{W}\right)_{ref} = \left(\frac{T}{W}\right)_{2nd \, seg} \times \frac{T_{ref}}{T_{2nd \, seg}}$$

Example Calculation of (T/W)_{2nd seg}

$$\left(\frac{T}{W}\right)_{2 \, nd \, seg} = \frac{N}{N-1} \left(\frac{1}{\left(\frac{L}{D}\right)_{2 \, nd \, seg}} + G\right)$$

For this example:

$$N = 2$$

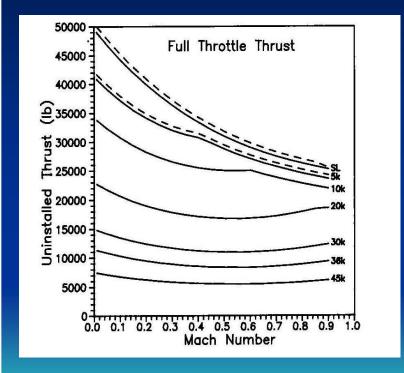
$$G = 0.024$$

$$\left(\frac{L}{D}\right)_{2nd \, seg} = 10.2$$

$$\left(\frac{T}{W}\right)_{2nd \, seg} = 2 \times \left(0.024 + \frac{1}{10.2}\right) = 0.24$$
 at that condition

Finally
$$\left(\frac{T}{W}\right)_{ref} = \left(\frac{T}{W}\right)_{2nd \, seg} x \, \frac{T_{ref}}{T_{2nd \, seg}}$$

Calculation of (T/W)_{2nd seg}

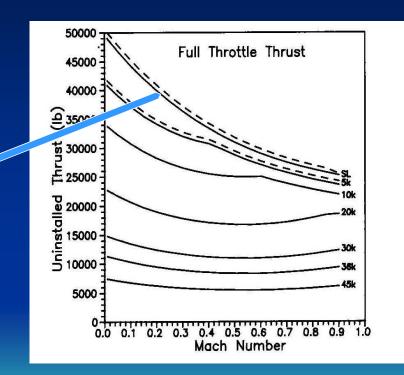

$$(C_L)_{V_2} = \frac{(C_L)_{\text{max } TO}}{1.44} = \frac{2.55}{1.44} = 1.77$$

Assume that typical wing loading is $120 \frac{lb}{ft^2}$

or select anticipated value

So
$$q = \frac{\frac{W}{S}}{(C_L)_{V_2}}) = \frac{120}{1.77} = 68 \frac{lb}{ft^2}$$

At sea level
$$\frac{q}{M^2} = 1481 \frac{lb}{ft^2}$$


Calculation of (T/W)_{2nd seg}

So
$$M_{2nd seg} = \sqrt{\frac{68}{1481}} = 0.21$$

From Raymer Table E.2 for BPR 8 engine at full thrust

$$\frac{T_{M=0.21}}{T_{ref}} = 0.68$$

So
$$\left(\frac{T}{W}\right)_{ref} = \left(\frac{T}{W}\right)_{2nd \, seq} \left(\frac{T_{ref}}{T_{2nd \, seg}}\right) = \frac{0.24}{0.68} = 0.35$$

Calculation of Landing Constraint

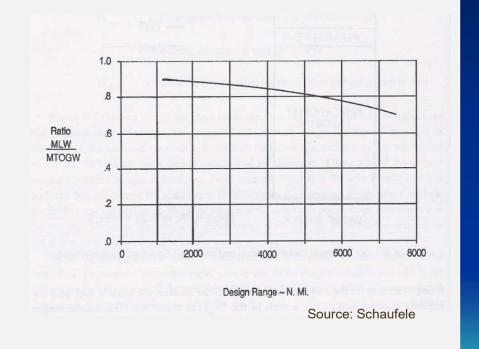
For specified landing field length (LFL),

$$\left(\frac{W}{S}\right)_{landing} = \sigma C_{L_{max}} \left(\frac{S_{landing}}{80} - S_a\right)$$

FAR 121.195 (b) requires that

$$S_{landing} = 0.6 LFL$$

otherwise
$$S_{landing} = LFL$$

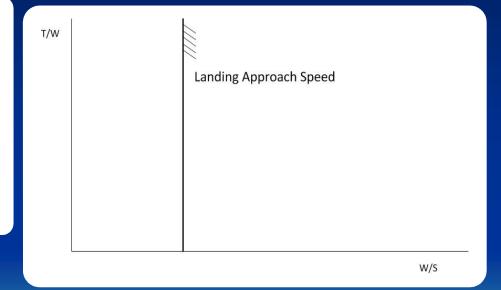

 $S_a = 1000$ ft for airliner

=600 ft for GA

= 450 ft for STOL with 7 deg glideslope

 $C_{L_{max}}$ = maximum lift coefficient on approach

then
$$\left(\frac{W}{S}\right)_{ref} = \left(\frac{W}{S}\right)_{landing} x \frac{MTOGW}{MLW}$$


W/S Required for Specified Landing Approach Speed

$$\frac{W}{S} = \frac{1}{2} \rho \left(1.3 V_{\text{stall}} \right)^2 \left(C_{L_{\text{max}}} \right)_{\text{Land}}$$

where

 V_{stall} = stall speed in approach condition

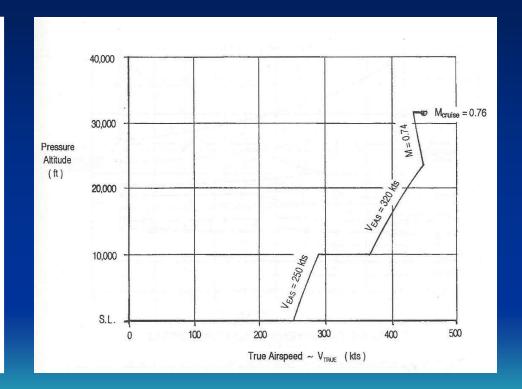
 $(C_{L_{max}})_{Land} = maximum C_{L}$ in approach condition

Calculation of T/W at start of cruise

At start of cruise (Raymer Eq. (5.29))

$$\frac{T}{W} = \frac{D}{W} + G = \frac{qC_{D_0}}{\frac{W}{S}} + \frac{W}{S} \frac{1}{q\pi A e} + G$$

 $\frac{W}{S}$ is independent variable


A and q are known (or assumed)

*G i*s defined by FAR (or MilSpec)

$$\left(=300 \frac{\text{ft}}{\text{min}} \text{ for commercial}\right)$$

Estimate C_{D_0}

Assume e = 0.8

Equivalent Skin Friction Method

Equivalent Skin Friction Method:

For a <u>flat plate</u> with surface parallel to flow

$$D = C_f q S$$

where

 $C_f = skin friction coefficient$

S = area

For an airplane

$$D_o = C_{f_o} q S_{wet}$$

where

C_{f_e} = equivalents kin friction coefficient

 $S_{wet} = airplane wetted area$

$$C_{D_o} = \frac{D_o}{qS_{ref}} = C_{f_e} \frac{S_{wet}}{S_{ref}}$$

Aircraft type	C _{fe}
Civil transport	0.0026
Bomber	0.0030
Military cargo	0.0035
Air Force fighter	0.0035
Navy fighter	0.0040
Supersonic cruise aircraft	0.0025
Light aircraft - single engine	0.0055
Light aircraft - twin engine	0.0045
Seaplane - propeller driven	0.0065
Seaplane - jet	0.0040

Source: Raymer (with modification)

Climb Requirements

FAR Definition	Climb Rate Requirement [ft/min]
Absolute Ceiling	0
Service Ceiling	100
Operational Ceiling	300

MilSpec Definition	Climb Rate Requirement [ft/min]
Combat Ceiling	500

Climb Rate [ft/min] Aircraft speed [ft/min]

G

Thrust/ Weight (T/W) and Wing Loading (W/S)

The End